Cargando…

Murine Insulin Growth Factor-like (IGFL) and Human IGFL1 Proteins Are Induced in Inflammatory Skin Conditions and Bind to a Novel Tumor Necrosis Factor Receptor Family Member, IGFLR1

Psoriasis is a human skin condition characterized by epidermal hyperproliferation and infiltration of multiple leukocyte populations. In characterizing a novel insulin growth factor (IGF)-like (IGFL) gene in mice (mIGFL), we found transcripts of this gene to be most highly expressed in skin with enh...

Descripción completa

Detalles Bibliográficos
Autores principales: Lobito, Adrian A., Ramani, Sree R., Tom, Irene, Bazan, J. Fernando, Luis, Elizabeth, Fairbrother, Wayne J., Ouyang, Wenjun, Gonzalez, Lino C.
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099712/
https://www.ncbi.nlm.nih.gov/pubmed/21454693
http://dx.doi.org/10.1074/jbc.M111.224626
Descripción
Sumario:Psoriasis is a human skin condition characterized by epidermal hyperproliferation and infiltration of multiple leukocyte populations. In characterizing a novel insulin growth factor (IGF)-like (IGFL) gene in mice (mIGFL), we found transcripts of this gene to be most highly expressed in skin with enhanced expression in models of skin wounding and psoriatic-like inflammation. A possible functional ortholog in humans, IGFL1, was uniquely and significantly induced in psoriatic skin samples. In vitro IGFL1 expression was up-regulated in cultured primary keratinocytes stimulated with tumor necrosis factor α but not by other psoriasis-associated cytokines. Finally, using a secreted and transmembrane protein library, we discovered high affinity interactions between human IGFL1 and mIGFL and the TMEM149 ectodomain. TMEM149 (renamed here as IGFLR1) is an uncharacterized gene with structural similarity to the tumor necrosis factor receptor family. Our studies demonstrate that IGFLR1 is expressed primarily on the surface of mouse T cells. The connection between mIGFL and IGFLR1 receptor suggests mIGFL may influence T cell biology within inflammatory skin conditions.