Cargando…

Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography

We present a new signal processing method that extracts the reference spectrum information from an acquired optical coherence tomography (OCT) image without a separate calibration step of reference spectrum measurement. The reference spectrum is used to remove the fixed-pattern noise that is a chara...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Sucbei, Lee, Sang-Won, Chen, Zhongping
Formato: Texto
Lenguaje:English
Publicado: Optical Society of America 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100290/
https://www.ncbi.nlm.nih.gov/pubmed/21164786
http://dx.doi.org/10.1364/OE.18.024395
_version_ 1782204175210250240
author Moon, Sucbei
Lee, Sang-Won
Chen, Zhongping
author_facet Moon, Sucbei
Lee, Sang-Won
Chen, Zhongping
author_sort Moon, Sucbei
collection PubMed
description We present a new signal processing method that extracts the reference spectrum information from an acquired optical coherence tomography (OCT) image without a separate calibration step of reference spectrum measurement. The reference spectrum is used to remove the fixed-pattern noise that is a characteristic artifact of Fourier-domain OCT schemes. It was found that the conventional approach based on an averaged spectrum, or mean spectrum, is prone to be influenced by the high-amplitude data points whose statistical distribution is hardly randomized. Thus, the conventional mean-spectrum subtraction method cannot completely eliminate the artifact but may leave residual horizontal lines in the final image. This problem was avoided by utilizing an advanced statistical analysis tool of the median A-line. The reference A-line was obtained by taking a complex median of each horizontal-line data. As an optional method of high-speed calculation, we also propose a minimum-variance mean A-line that can be calculated from an image by a collection of mean A-line values taken from a horizontal segment whose complex variance of the data points is the minimum. By comparing the images processed by those methods, it was found that our new processing schemes of the median-line subtraction and the minimum-variance mean-line subtraction successfully suppressed the fixed-pattern noise. The inverse Fourier transform of the obtained reference A-line well matched the reference spectrum obtained by a physical measurement as well.
format Text
id pubmed-3100290
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-31002902011-05-23 Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography Moon, Sucbei Lee, Sang-Won Chen, Zhongping Opt Express Research-Article We present a new signal processing method that extracts the reference spectrum information from an acquired optical coherence tomography (OCT) image without a separate calibration step of reference spectrum measurement. The reference spectrum is used to remove the fixed-pattern noise that is a characteristic artifact of Fourier-domain OCT schemes. It was found that the conventional approach based on an averaged spectrum, or mean spectrum, is prone to be influenced by the high-amplitude data points whose statistical distribution is hardly randomized. Thus, the conventional mean-spectrum subtraction method cannot completely eliminate the artifact but may leave residual horizontal lines in the final image. This problem was avoided by utilizing an advanced statistical analysis tool of the median A-line. The reference A-line was obtained by taking a complex median of each horizontal-line data. As an optional method of high-speed calculation, we also propose a minimum-variance mean A-line that can be calculated from an image by a collection of mean A-line values taken from a horizontal segment whose complex variance of the data points is the minimum. By comparing the images processed by those methods, it was found that our new processing schemes of the median-line subtraction and the minimum-variance mean-line subtraction successfully suppressed the fixed-pattern noise. The inverse Fourier transform of the obtained reference A-line well matched the reference spectrum obtained by a physical measurement as well. Optical Society of America 2010-11-08 /pmc/articles/PMC3100290/ /pubmed/21164786 http://dx.doi.org/10.1364/OE.18.024395 Text en ©2010 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.
spellingShingle Research-Article
Moon, Sucbei
Lee, Sang-Won
Chen, Zhongping
Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title_full Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title_fullStr Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title_full_unstemmed Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title_short Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
title_sort reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography
topic Research-Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100290/
https://www.ncbi.nlm.nih.gov/pubmed/21164786
http://dx.doi.org/10.1364/OE.18.024395
work_keys_str_mv AT moonsucbei referencespectrumextractionandfixedpatternnoiseremovalinopticalcoherencetomography
AT leesangwon referencespectrumextractionandfixedpatternnoiseremovalinopticalcoherencetomography
AT chenzhongping referencespectrumextractionandfixedpatternnoiseremovalinopticalcoherencetomography