Cargando…
Melatonin Induces Follicle Maturation in Danio rerio
Most organisms modulate their reproductive activity responding to day length by the nocturnal release of melatonin by the pineal gland. This hormone is also responsible for synchronizing reproduction with specific external environment stimuli in order to optimize reproductive success. The aim of thi...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102064/ https://www.ncbi.nlm.nih.gov/pubmed/21647435 http://dx.doi.org/10.1371/journal.pone.0019978 |
Sumario: | Most organisms modulate their reproductive activity responding to day length by the nocturnal release of melatonin by the pineal gland. This hormone is also responsible for synchronizing reproduction with specific external environment stimuli in order to optimize reproductive success. The aim of this study was to establish the effect of melatonin on zebrafish reproduction. Adult females were daily exposed, via water, to two different doses (100 nM and 1 µM) of melatonin. Melatonin led to an increase of the Gonado Somatic Index (GSI) associated with the increase of eggs production, and the raise of gene and protein levels of vitellogenin (VTG) and estradiol receptor α (ERα) in the liver. The ability of melatonin to increase fecundity was consistent with a significant increase of gene transcription of kiss 1, kiss 2, gnrh3, in the brain, and lh in the pituitary, while in the ovary (in class IIIB follicles), with a significant decrease of two genes codifying for intra-ovarian regulators of premature oocyte maturation, the tgfβ1 and the bmp15. The reduction in the expression of these two genes was concomitant with the increase of lhr and a modulation of mprα and mprβ gene transcription, whose proteins are involved in oocyte maturation. Melatonin also exerted a direct action on follicles as shown by the increase of the oocytes undergoing to germinal vesicle break down (GVBD) and modulated mpr α and β gene expression in the in vitro exposure. These data highlight the effects of melatonin in promoting zebrafish reproduction exerting its effects either in the brain-pituitary and in the gonads. |
---|