Cargando…
A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes
Humans can categorize objects in complex natural scenes within 100–150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model)...
Autores principales: | He, Xiaofu, Yang, Zhiyong, Tsien, Joe Z. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102072/ https://www.ncbi.nlm.nih.gov/pubmed/21647443 http://dx.doi.org/10.1371/journal.pone.0020002 |
Ejemplares similares
-
Statistics of natural scene structures and scene categorization
por: Chen, Xin, et al.
Publicado: (2012) -
Emergence of Visual Saliency from Natural Scenes via Context-Mediated Probability Distributions Coding
por: Xu, Jinhua, et al.
Publicado: (2010) -
Ultra-rapid object categorization in real-world scenes with top-down manipulations
por: Xu, Bingjie, et al.
Publicado: (2019) -
Statistics of eye movements in scene categorization and scene memorization
por: Chen, Xin, et al.
Publicado: (2012) -
Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization
por: Brand, John, et al.
Publicado: (2014)