Cargando…
The Cell Surface Proteome of Human Mesenchymal Stromal Cells
BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102717/ https://www.ncbi.nlm.nih.gov/pubmed/21637820 http://dx.doi.org/10.1371/journal.pone.0020399 |
Sumario: | BACKGROUND: Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. CONCLUSIONS/SIGNIFICANCE: Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. |
---|