Cargando…
GENERAL PROPERTIES OF THE TRANSCRIPTIONAL TIME-SERIES IN ESCHERICHIA COLI
Gene activity is described by the time-series of discrete, stochastic mRNA production events. This transcriptional time-series exhibits intermittent, bursty behavior. One consequence of this temporal intricacy is that gene expression can be tuned by varying different features of the time-series. Wha...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102781/ https://www.ncbi.nlm.nih.gov/pubmed/21532574 http://dx.doi.org/10.1038/ng.821 |
Sumario: | Gene activity is described by the time-series of discrete, stochastic mRNA production events. This transcriptional time-series exhibits intermittent, bursty behavior. One consequence of this temporal intricacy is that gene expression can be tuned by varying different features of the time-series. What schemes for varying the transcriptional time-series are observed in the cell? Are the observed properties of these time-series optimized for cellular function? To address these questions, we characterize mRNA copy-number statistics at single-molecule resolution from multiple Escherichia coli promoters. We find that the degree of burstiness depends only on the gene expression level, while being independent of the details of gene regulation. The observed behavior is explained by the underlying variation in the duration of bursting events. Using information theory, we find that the properties of the transcriptional time series allow the cell to efficiently map the extracellular concentration of inducer molecules to intracellular levels of mRNA and proteins. |
---|