Cargando…
A comparison of random forests, boosting and support vector machines for genomic selection
BACKGROUND: Genomic selection (GS) involves estimating breeding values using molecular markers spanning the entire genome. Accurate prediction of genomic breeding values (GEBVs) presents a central challenge to contemporary plant and animal breeders. The existence of a wide array of marker-based appr...
Autores principales: | Ogutu, Joseph O, Piepho, Hans-Peter, Schulz-Streeck, Torben |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103196/ https://www.ncbi.nlm.nih.gov/pubmed/21624167 http://dx.doi.org/10.1186/1753-6561-5-S3-S11 |
Ejemplares similares
-
Pre-selection of markers for genomic selection
por: Schulz-Streeck, Torben, et al.
Publicado: (2011) -
Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
por: Ogutu, Joseph O, et al.
Publicado: (2012) -
Genome-wide selection by mixed model ridge regression and extensions based on geostatistical models
por: Schulz-Streeck, Torben, et al.
Publicado: (2010) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006)