Cargando…

Natural history of SLC11 genes in vertebrates: tales from the fish world

BACKGROUND: The SLC11A1/Nramp1 and SLC11A2/Nramp2 genes belong to the SLC11/Nramp family of transmembrane divalent metal transporters, with SLC11A1 being associated with resistance to pathogens and SLC11A2 involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the S...

Descripción completa

Detalles Bibliográficos
Autores principales: Neves, João V, Wilson, Jonathan M, Kuhl, Heiner, Reinhardt, Richard, Castro, L Filipe C, Rodrigues, Pedro NS
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103463/
https://www.ncbi.nlm.nih.gov/pubmed/21501491
http://dx.doi.org/10.1186/1471-2148-11-106
_version_ 1782204520867037184
author Neves, João V
Wilson, Jonathan M
Kuhl, Heiner
Reinhardt, Richard
Castro, L Filipe C
Rodrigues, Pedro NS
author_facet Neves, João V
Wilson, Jonathan M
Kuhl, Heiner
Reinhardt, Richard
Castro, L Filipe C
Rodrigues, Pedro NS
author_sort Neves, João V
collection PubMed
description BACKGROUND: The SLC11A1/Nramp1 and SLC11A2/Nramp2 genes belong to the SLC11/Nramp family of transmembrane divalent metal transporters, with SLC11A1 being associated with resistance to pathogens and SLC11A2 involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the SLC11 gene family have been clearly identified in tetrapods; however SLC11A1 has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the SLC11 genes in teleosts and evaluated if the roles attributed to mammalian SLC11 genes are assured by other fish specific SLC11 gene members. RESULTS: Two different SLC11 genes were isolated in the European sea bass (Dicentrarchus. labrax), and named slc11a2-α and slc11a2-β, since both were found to be evolutionary closer to tetrapods SLC11A2, through phylogenetic analysis and comparative genomics. Induction of slc11a2-α and slc11a2-β in sea bass, upon iron modulation or exposure to Photobacterium damselae spp. piscicida, was evaluated in in vivo or in vitro experimental models. Overall, slc11a2-α was found to respond only to iron deficiency in the intestine, whereas slc11a2-β was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes. CONCLUSIONS: Our data suggests that despite the absence of slc11a1, its functions have been undertaken by one of the slc11a2 duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance.
format Text
id pubmed-3103463
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31034632011-05-28 Natural history of SLC11 genes in vertebrates: tales from the fish world Neves, João V Wilson, Jonathan M Kuhl, Heiner Reinhardt, Richard Castro, L Filipe C Rodrigues, Pedro NS BMC Evol Biol Research Article BACKGROUND: The SLC11A1/Nramp1 and SLC11A2/Nramp2 genes belong to the SLC11/Nramp family of transmembrane divalent metal transporters, with SLC11A1 being associated with resistance to pathogens and SLC11A2 involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the SLC11 gene family have been clearly identified in tetrapods; however SLC11A1 has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the SLC11 genes in teleosts and evaluated if the roles attributed to mammalian SLC11 genes are assured by other fish specific SLC11 gene members. RESULTS: Two different SLC11 genes were isolated in the European sea bass (Dicentrarchus. labrax), and named slc11a2-α and slc11a2-β, since both were found to be evolutionary closer to tetrapods SLC11A2, through phylogenetic analysis and comparative genomics. Induction of slc11a2-α and slc11a2-β in sea bass, upon iron modulation or exposure to Photobacterium damselae spp. piscicida, was evaluated in in vivo or in vitro experimental models. Overall, slc11a2-α was found to respond only to iron deficiency in the intestine, whereas slc11a2-β was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes. CONCLUSIONS: Our data suggests that despite the absence of slc11a1, its functions have been undertaken by one of the slc11a2 duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance. BioMed Central 2011-04-18 /pmc/articles/PMC3103463/ /pubmed/21501491 http://dx.doi.org/10.1186/1471-2148-11-106 Text en Copyright ©2011 Neves et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Neves, João V
Wilson, Jonathan M
Kuhl, Heiner
Reinhardt, Richard
Castro, L Filipe C
Rodrigues, Pedro NS
Natural history of SLC11 genes in vertebrates: tales from the fish world
title Natural history of SLC11 genes in vertebrates: tales from the fish world
title_full Natural history of SLC11 genes in vertebrates: tales from the fish world
title_fullStr Natural history of SLC11 genes in vertebrates: tales from the fish world
title_full_unstemmed Natural history of SLC11 genes in vertebrates: tales from the fish world
title_short Natural history of SLC11 genes in vertebrates: tales from the fish world
title_sort natural history of slc11 genes in vertebrates: tales from the fish world
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103463/
https://www.ncbi.nlm.nih.gov/pubmed/21501491
http://dx.doi.org/10.1186/1471-2148-11-106
work_keys_str_mv AT nevesjoaov naturalhistoryofslc11genesinvertebratestalesfromthefishworld
AT wilsonjonathanm naturalhistoryofslc11genesinvertebratestalesfromthefishworld
AT kuhlheiner naturalhistoryofslc11genesinvertebratestalesfromthefishworld
AT reinhardtrichard naturalhistoryofslc11genesinvertebratestalesfromthefishworld
AT castrolfilipec naturalhistoryofslc11genesinvertebratestalesfromthefishworld
AT rodriguespedrons naturalhistoryofslc11genesinvertebratestalesfromthefishworld