Cargando…
Alternative communication systems for people with severe motor disabilities: a survey
We have now sufficient evidence that using electrical biosignals in the field of Alternative and Augmented Communication is feasible. Additionally, they are particularly suitable in the case of people with severe motor impairment, e.g. people with high-level spinal cord injury or with locked-up synd...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103465/ https://www.ncbi.nlm.nih.gov/pubmed/21507236 http://dx.doi.org/10.1186/1475-925X-10-31 |
Sumario: | We have now sufficient evidence that using electrical biosignals in the field of Alternative and Augmented Communication is feasible. Additionally, they are particularly suitable in the case of people with severe motor impairment, e.g. people with high-level spinal cord injury or with locked-up syndrome. Developing solutions for them implies that we find ways to use sensors that fit the user's needs and limitations, which in turn impacts the specifications of the system translating the user's intentions into commands. After devising solutions for a given user or profile, the system should be evaluated with an appropriate method, allowing a comparison with other solutions. This paper submits a review of the way three bioelectrical signals - electromyographic, electrooculographic and electroencephalographic - have been utilised in alternative communication with patients suffering severe motor restrictions. It also offers a comparative study of the various methods applied to measure the performance of AAC systems. |
---|