Cargando…
The Use of Mixed Models for the Analysis of Mediated Data with Time-Dependent Predictors
Linear mixed models (LMMs) are frequently used to analyze longitudinal data. Although these models can be used to evaluate mediation, they do not directly model causal pathways. Structural equation models (SEMs) are an alternative technique that allows explicit modeling of mediation. The goal of thi...
Autores principales: | Blood, Emily A., Cheng, Debbie M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103895/ https://www.ncbi.nlm.nih.gov/pubmed/21647351 http://dx.doi.org/10.1155/2011/435078 |
Ejemplares similares
-
Non-linear mixed models in the analysis of mediated longitudinal data with binary outcomes
por: Blood, Emily A, et al.
Publicado: (2012) -
Performance of mixed effects models in the analysis of mediated longitudinal data
por: Blood, Emily A, et al.
Publicado: (2010) -
Performance of joint modelling of time-to-event data with time-dependent predictors: an assessment based on transition to psychosis data
por: Yuen, Hok Pan, et al.
Publicado: (2016) -
Probabilistic model data of time-dependent accident scenarios for a mixing tank mechanical system
por: Mancuso, Alessandro, et al.
Publicado: (2019) -
Survival Data Analysis with Time-Dependent Covariates Using Generalized Additive Models
por: Tsujitani, Masaaki, et al.
Publicado: (2012)