Cargando…
Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance
BACKGROUND: A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effectiv...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104029/ https://www.ncbi.nlm.nih.gov/pubmed/21647308 http://dx.doi.org/10.1371/journal.pntd.0001206 |
_version_ | 1782204583874920448 |
---|---|
author | Chan, Emily H. Sahai, Vikram Conrad, Corrie Brownstein, John S. |
author_facet | Chan, Emily H. Sahai, Vikram Conrad, Corrie Brownstein, John S. |
author_sort | Chan, Emily H. |
collection | PubMed |
description | BACKGROUND: A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics. METHODOLOGY/PRINCIPAL FINDINGS: Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99. CONCLUSIONS/SIGNIFICANCE: Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance. |
format | Text |
id | pubmed-3104029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31040292011-06-06 Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance Chan, Emily H. Sahai, Vikram Conrad, Corrie Brownstein, John S. PLoS Negl Trop Dis Research Article BACKGROUND: A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics. METHODOLOGY/PRINCIPAL FINDINGS: Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99. CONCLUSIONS/SIGNIFICANCE: Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance. Public Library of Science 2011-05-31 /pmc/articles/PMC3104029/ /pubmed/21647308 http://dx.doi.org/10.1371/journal.pntd.0001206 Text en Chan et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chan, Emily H. Sahai, Vikram Conrad, Corrie Brownstein, John S. Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title | Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title_full | Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title_fullStr | Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title_full_unstemmed | Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title_short | Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance |
title_sort | using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104029/ https://www.ncbi.nlm.nih.gov/pubmed/21647308 http://dx.doi.org/10.1371/journal.pntd.0001206 |
work_keys_str_mv | AT chanemilyh usingwebsearchquerydatatomonitordengueepidemicsanewmodelforneglectedtropicaldiseasesurveillance AT sahaivikram usingwebsearchquerydatatomonitordengueepidemicsanewmodelforneglectedtropicaldiseasesurveillance AT conradcorrie usingwebsearchquerydatatomonitordengueepidemicsanewmodelforneglectedtropicaldiseasesurveillance AT brownsteinjohns usingwebsearchquerydatatomonitordengueepidemicsanewmodelforneglectedtropicaldiseasesurveillance |