Cargando…
Identification of Antifreeze Proteins and Their Functional Residues by Support Vector Machine and Genetic Algorithms based on n-Peptide Compositions
For the first time, multiple sets of n-peptide compositions from antifreeze protein (AFP) sequences of various cold-adapted fish and insects were analyzed using support vector machine and genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily divergent types...
Autores principales: | Yu, Chin-Sheng, Lu, Chih-Hao |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105057/ https://www.ncbi.nlm.nih.gov/pubmed/21655262 http://dx.doi.org/10.1371/journal.pone.0020445 |
Ejemplares similares
-
Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences
por: Zhao, Xiaowei, et al.
Publicado: (2012) -
The Antifreeze and Cryoprotective Activities of a Novel Antifreeze Peptide from Ctenopharyngodon idella Scales
por: Dang, Meizhu, et al.
Publicado: (2022) -
Peptidic Antifreeze Materials: Prospects and Challenges
por: Surís-Valls, Romà, et al.
Publicado: (2019) -
Disaccharide Residues are Required for Native Antifreeze
Glycoprotein Activity
por: Sun, Yuling, et al.
Publicado: (2021) -
Prediction of antifreeze proteins using machine learning
por: Khan, Adnan, et al.
Publicado: (2022)