Cargando…

CSN-mediated deneddylation differentially modulates Ci(155) proteolysis to promote Hedgehog signalling responses

The Hedgehog (Hh) morphogen directs distinct cell responses according to its distinct signalling levels. Hh signalling stabilizes transcription factor cubitus interruptus (Ci) by prohibiting SCF(Slimb)-dependent ubiquitylation and proteolysis of Ci. How graded Hh signalling confers differential SCF(...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, June-Tai, Lin, Wei-Hsiang, Chen, Wei-Yu, Huang, Yi-Chun, Tang, Chiou-Yang, Ho, Margaret S., Pi, Haiwei, Chien, Cheng-Ting
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105314/
https://www.ncbi.nlm.nih.gov/pubmed/21304511
http://dx.doi.org/10.1038/ncomms1185
Descripción
Sumario:The Hedgehog (Hh) morphogen directs distinct cell responses according to its distinct signalling levels. Hh signalling stabilizes transcription factor cubitus interruptus (Ci) by prohibiting SCF(Slimb)-dependent ubiquitylation and proteolysis of Ci. How graded Hh signalling confers differential SCF(Slimb)-mediated Ci proteolysis in responding cells remains unclear. Here, we show that in COP9 signalosome (CSN) mutants, in which deneddylation of SCF(Slimb) is inactivated, Ci is destabilized in low-to-intermediate Hh signalling cells. As a consequence, expression of the low-threshold Hh target gene dpp is disrupted, highlighting the critical role of CSN deneddylation on low-to-intermediate Hh signalling response. The status of Ci phosphorylation and the level of E1 ubiquitin-activating enzyme are tightly coupled to this CSN regulation. We propose that the affinity of substrate–E3 interaction, ligase activity and E1 activity are three major determinants for substrate ubiquitylation and thereby substrate degradation in vivo.