Cargando…

Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?

BACKGROUND: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy). It is...

Descripción completa

Detalles Bibliográficos
Autores principales: Narbona, Eduardo, Ortiz, Pedro L., Arista, Montserrat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107240/
https://www.ncbi.nlm.nih.gov/pubmed/21674062
http://dx.doi.org/10.1371/journal.pone.0020668
Descripción
Sumario:BACKGROUND: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce selfing; however, this has not been accurately assessed. METHODOLOGY/PRINCIPAL FINDINGS: This expectation was tested over two years in two natural populations of the closely related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the cyathia level. Both spurges showed a high population synchrony (Z<79), and their inflorescences flower synchronously. In E. nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was partially self-incompatible. CONCLUSIONS/SIGNIFICANCE: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each process is sufficiently effective in avoiding self-fertilization.