Cargando…

Characterization of intraocular pressure responses of the Tibetan monkey (Macaca thibetana)

PURPOSE: To characterize the effects of circadian rhythm, feeding time, age, general anesthesia, and ocular hypotensive compounds on intraocular pressure (IOP) of the Tibetan monkey (Macaca thibetana). METHODS: Tibetan monkeys were trained for IOP measurement with the TonoVet® rebound tonometer with...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Guo, Zeng, Tao, Yu, Wenhan, Yan, Naihong, Wang, Hongxing, Cai, Su-ping, Pang, Iok-Hou, Liu, Xuyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108893/
https://www.ncbi.nlm.nih.gov/pubmed/21654897
Descripción
Sumario:PURPOSE: To characterize the effects of circadian rhythm, feeding time, age, general anesthesia, and ocular hypotensive compounds on intraocular pressure (IOP) of the Tibetan monkey (Macaca thibetana). METHODS: Tibetan monkeys were trained for IOP measurement with the TonoVet® rebound tonometer without sedation or anesthesia. Their circadian IOP fluctuation was monitored every 3 h. Effects of changing the feeding time, general anesthesia, age (2–3 year-old versus 8–15 year-old animals), and various pharmacological agents, such as travoprost, timolol, naphazoline and spiradoline, on IOP were also evaluated. RESULTS: After behavioral training, conscious Tibetan monkeys were receptive to IOP measurement. The lowest and highest IOP values in a circadian cycle were recorded at 3:00 AM (19.8±0.4 mmHg, mean±SEM, n=12) and noon (29.3±0.9 mmHg), respectively. Changing the feeding time from 11:30 AM to 12:30 PM lowered the noon IOP to 25.1±1.2 mmHg. General anesthesia lowered IOP in these monkeys, while IOP of young and mature animals were similar. Three hours after topical ocular administration, travoprost reduced IOP by 5.2±0.6 mmHg (n=6, p<0.001), and timolol reduced IOP by 2.8±0.7 mmHg (p<0.05). Naphazoline and spiradoline lowered IOP by 4.8 mmHg and 2.5 mmHg (both p<0.001), respectively, 2 h after drug administration. CONCLUSIONS: The circadian IOP fluctuation in conscious Tibetan monkeys and their responses to travoprost, timolol, and other experimental conditions are similar to other primates. These monkeys appear to be a suitable model for glaucoma research.