Cargando…
A comparison of machine learning techniques for survival prediction in breast cancer
BACKGROUND: The ability to accurately classify cancer patients into risk classes, i.e. to predict the outcome of the pathology on an individual basis, is a key ingredient in making therapeutic decisions. In recent years gene expression data have been successfully used to complement the clinical and...
Autores principales: | Vanneschi, Leonardo, Farinaccio, Antonella, Mauri, Giancarlo, Antoniotti, Mauro, Provero, Paolo, Giacobini, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108919/ https://www.ncbi.nlm.nih.gov/pubmed/21569330 http://dx.doi.org/10.1186/1756-0381-4-12 |
Ejemplares similares
-
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer
por: Castelli, Mauro, et al.
Publicado: (2015) -
Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches
por: Tarekegn, Adane, et al.
Publicado: (2020) -
Predicting factors for survival of breast cancer patients using machine learning techniques
por: Ganggayah, Mogana Darshini, et al.
Publicado: (2019) -
Controlling Individuals Growth in Semantic Genetic Programming through Elitist Replacement
por: Castelli, Mauro, et al.
Publicado: (2016) -
Additive Functions in Boolean Models of Gene Regulatory Network Modules
por: Darabos, Christian, et al.
Publicado: (2011)