Cargando…

Numerical Modeling of Fluid Flow in Solid Tumors

A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate bou...

Descripción completa

Detalles Bibliográficos
Autores principales: Soltani, M., Chen, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108959/
https://www.ncbi.nlm.nih.gov/pubmed/21673952
http://dx.doi.org/10.1371/journal.pone.0020344
_version_ 1782205394021515264
author Soltani, M.
Chen, P.
author_facet Soltani, M.
Chen, P.
author_sort Soltani, M.
collection PubMed
description A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges.
format Online
Article
Text
id pubmed-3108959
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31089592011-06-13 Numerical Modeling of Fluid Flow in Solid Tumors Soltani, M. Chen, P. PLoS One Research Article A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. Public Library of Science 2011-06-06 /pmc/articles/PMC3108959/ /pubmed/21673952 http://dx.doi.org/10.1371/journal.pone.0020344 Text en Soltani and Chen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Soltani, M.
Chen, P.
Numerical Modeling of Fluid Flow in Solid Tumors
title Numerical Modeling of Fluid Flow in Solid Tumors
title_full Numerical Modeling of Fluid Flow in Solid Tumors
title_fullStr Numerical Modeling of Fluid Flow in Solid Tumors
title_full_unstemmed Numerical Modeling of Fluid Flow in Solid Tumors
title_short Numerical Modeling of Fluid Flow in Solid Tumors
title_sort numerical modeling of fluid flow in solid tumors
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108959/
https://www.ncbi.nlm.nih.gov/pubmed/21673952
http://dx.doi.org/10.1371/journal.pone.0020344
work_keys_str_mv AT soltanim numericalmodelingoffluidflowinsolidtumors
AT chenp numericalmodelingoffluidflowinsolidtumors