Cargando…

Factors Influencing Oxidative Imbalance in Pulmonary Fibrosis: An Immunohistochemical Study

Background. Idiopathic Pulmonary Fibrosis (IPF) is a fatal lung disease of unknown etiology characterized by interstitial fibrosis determining irreversible distortion of pulmonary architecture. Reactive oxygen species (ROS) and markers of oxidative stress play a pivotal role in human IPF pathology,...

Descripción completa

Detalles Bibliográficos
Autores principales: Inghilleri, Simona, Morbini, Patrizia, Campo, Ilaria, Zorzetto, Michele, Oggionni, Tiberio, Pozzi, Ernesto, Luisetti, Maurizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109417/
https://www.ncbi.nlm.nih.gov/pubmed/21660236
http://dx.doi.org/10.1155/2011/421409
Descripción
Sumario:Background. Idiopathic Pulmonary Fibrosis (IPF) is a fatal lung disease of unknown etiology characterized by interstitial fibrosis determining irreversible distortion of pulmonary architecture. Reactive oxygen species (ROS) and markers of oxidative stress play a pivotal role in human IPF pathology, possibly through induction of epithelial-mesenchymal transition (EMT). Methods. We investigated by immunohistochemistry, in UIP and COP tissue samples, the expression of most relevant markers of the molecular interplay involving RAGE, oxidant/antioxidant balance regulation, tissue nitrosylation, and mediators of EMT. Results. In both UIP and COP, the degree of RAGE expression was similarly high, while SODs and i-NOS, diffusely present in COP endoalveolar plugs, were almost absent in UIP fibroblast foci. A lower degree of tissue nitrosilation was observed in UIP than in COP. Conclusions. Fibroblast lesions of UIP and of COP share a similar degree of activation of RAGE, while antioxidant enzyme expression markedly reduced in UIP.