Cargando…
Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity
Resting-state networks (RSNs) can be reliably and reproducibly detected using independent component analysis (ICA) at both individual subject and group levels. Altering ICA dimensionality (model order) estimation can have a significant impact on the spatial characteristics of the RSNs as well as the...
Autores principales: | Abou Elseoud, Ahmed, Littow, Harri, Remes, Jukka, Starck, Tuomo, Nikkinen, Juha, Nissilä, Juuso, Timonen, Markku, Tervonen, Osmo, Kiviniemi, Vesa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109774/ https://www.ncbi.nlm.nih.gov/pubmed/21687724 http://dx.doi.org/10.3389/fnsys.2011.00037 |
Ejemplares similares
-
Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study
por: Littow, Harri, et al.
Publicado: (2010) -
Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal
por: Kiviniemi, Vesa, et al.
Publicado: (2009) -
Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study
por: Littow, Harri, et al.
Publicado: (2015) -
GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia
por: Rytty, Riikka, et al.
Publicado: (2013) -
The Effect of Gray Matter ICA and Coefficient of Variation Mapping of BOLD Data on the Detection of Functional Connectivity Changes in Alzheimer’s Disease and bvFTD
por: Tuovinen, Timo, et al.
Publicado: (2017)