Cargando…
Machine learning with naturally labeled data for identifying abbreviation definitions
BACKGROUND: The rapid growth of biomedical literature requires accurate text analysis and text processing tools. Detecting abbreviations and identifying their definitions is an important component of such tools. Most existing approaches for the abbreviation definition identification task employ rule...
Autores principales: | Yeganova, Lana, Comeau, Donald C, Wilbur, W John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111592/ https://www.ncbi.nlm.nih.gov/pubmed/21658293 http://dx.doi.org/10.1186/1471-2105-12-S3-S6 |
Ejemplares similares
-
Finding abbreviations in biomedical literature: three BioC-compatible modules and four BioC-formatted corpora
por: Islamaj Doğan, Rezarta, et al.
Publicado: (2014) -
Abbreviation definition identification based on automatic precision estimates
por: Sohn, Sunghwan, et al.
Publicado: (2008) -
Finding biomedical categories in Medline(®)
por: Yeganova, Lana, et al.
Publicado: (2012) -
BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
por: Kuo, Cheng-Ju, et al.
Publicado: (2009) -
A Field Sensor: computing the composition and intent of PubMed queries
por: Yeganova, Lana, et al.
Publicado: (2018)