Cargando…
Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models
Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112200/ https://www.ncbi.nlm.nih.gov/pubmed/21695208 http://dx.doi.org/10.1371/journal.pone.0020501 |
_version_ | 1782205716218511360 |
---|---|
author | Butler, David Hwang, Jeannie Estick, Candice Nishiyama, Akiko Kumar, Saranya Santhosh Baveghems, Clive Young-Oxendine, Hollie B. Wisniewski, Meagan L. Charalambides, Ana Bahr, Ben A. |
author_facet | Butler, David Hwang, Jeannie Estick, Candice Nishiyama, Akiko Kumar, Saranya Santhosh Baveghems, Clive Young-Oxendine, Hollie B. Wisniewski, Meagan L. Charalambides, Ana Bahr, Ben A. |
author_sort | Butler, David |
collection | PubMed |
description | Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1–42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1–38) occurs as Aβ(1–42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1–42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders. |
format | Online Article Text |
id | pubmed-3112200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31122002011-06-21 Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models Butler, David Hwang, Jeannie Estick, Candice Nishiyama, Akiko Kumar, Saranya Santhosh Baveghems, Clive Young-Oxendine, Hollie B. Wisniewski, Meagan L. Charalambides, Ana Bahr, Ben A. PLoS One Research Article Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1–42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1–38) occurs as Aβ(1–42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1–42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders. Public Library of Science 2011-06-10 /pmc/articles/PMC3112200/ /pubmed/21695208 http://dx.doi.org/10.1371/journal.pone.0020501 Text en Butler et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Butler, David Hwang, Jeannie Estick, Candice Nishiyama, Akiko Kumar, Saranya Santhosh Baveghems, Clive Young-Oxendine, Hollie B. Wisniewski, Meagan L. Charalambides, Ana Bahr, Ben A. Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title | Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title_full | Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title_fullStr | Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title_full_unstemmed | Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title_short | Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models |
title_sort | protective effects of positive lysosomal modulation in alzheimer's disease transgenic mouse models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112200/ https://www.ncbi.nlm.nih.gov/pubmed/21695208 http://dx.doi.org/10.1371/journal.pone.0020501 |
work_keys_str_mv | AT butlerdavid protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT hwangjeannie protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT estickcandice protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT nishiyamaakiko protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT kumarsaranyasanthosh protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT baveghemsclive protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT youngoxendinehollieb protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT wisniewskimeaganl protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT charalambidesana protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels AT bahrbena protectiveeffectsofpositivelysosomalmodulationinalzheimersdiseasetransgenicmousemodels |