Cargando…

Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle

Optical nanoantennas, just like their radio-frequency equivalents, enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy...

Descripción completa

Detalles Bibliográficos
Autores principales: Schumacher, Thorsten, Kratzer, Kai, Molnar, David, Hentschel, Mario, Giessen, Harald, Lippitz, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113233/
http://dx.doi.org/10.1038/ncomms1334
Descripción
Sumario:Optical nanoantennas, just like their radio-frequency equivalents, enhance the light-matter interaction in their feed gap. Antenna enhancement of small signals promises to open a new regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially the nonlinear spectroscopy of single nanoobjects is very demanding. Here we present the first antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we use the antenna to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by mechanical breathing oscillations. We increase the signal amplitu-de by an order of magnitude, which is in good agreement with our analytical and numerical models. Our method will find applications in linear and nonlinear spectroscopy of single nanoobjects, especially in simplifying such challenging experiments as transient absorption or multiphoton excitation.