Cargando…
A protein network-guided screen for cell cycle regulators in Drosophila
BACKGROUND: Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes id...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113730/ https://www.ncbi.nlm.nih.gov/pubmed/21548953 http://dx.doi.org/10.1186/1752-0509-5-65 |
_version_ | 1782205955905159168 |
---|---|
author | Guest, Stephen T Yu, Jingkai Liu, Dongmei Hines, Julie A Kashat, Maria A Finley, Russell L |
author_facet | Guest, Stephen T Yu, Jingkai Liu, Dongmei Hines, Julie A Kashat, Maria A Finley, Russell L |
author_sort | Guest, Stephen T |
collection | PubMed |
description | BACKGROUND: Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. RESULTS: We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. CONCLUSIONS: Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival. |
format | Online Article Text |
id | pubmed-3113730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31137302011-06-14 A protein network-guided screen for cell cycle regulators in Drosophila Guest, Stephen T Yu, Jingkai Liu, Dongmei Hines, Julie A Kashat, Maria A Finley, Russell L BMC Syst Biol Research Article BACKGROUND: Large-scale RNAi-based screens are playing a critical role in defining sets of genes that regulate specific cellular processes. Numerous screens have been completed and in some cases more than one screen has examined the same cellular process, enabling a direct comparison of the genes identified in separate screens. Surprisingly, the overlap observed between the results of similar screens is low, suggesting that RNAi screens have relatively high levels of false positives, false negatives, or both. RESULTS: We re-examined genes that were identified in two previous RNAi-based cell cycle screens to identify potential false positives and false negatives. We were able to confirm many of the originally observed phenotypes and to reveal many likely false positives. To identify potential false negatives from the previous screens, we used protein interaction networks to select genes for re-screening. We demonstrate cell cycle phenotypes for a significant number of these genes and show that the protein interaction network is an efficient predictor of new cell cycle regulators. Combining our results with the results of the previous screens identified a group of validated, high-confidence cell cycle/cell survival regulators. Examination of the subset of genes from this group that regulate the G1/S cell cycle transition revealed the presence of multiple members of three structurally related protein complexes: the eukaryotic translation initiation factor 3 (eIF3) complex, the COP9 signalosome, and the proteasome lid. Using a combinatorial RNAi approach, we show that while all three of these complexes are required for Cdk2/Cyclin E activity, the eIF3 complex is specifically required for some other step that limits the G1/S cell cycle transition. CONCLUSIONS: Our results show that false positives and false negatives each play a significant role in the lack of overlap that is observed between similar large-scale RNAi-based screens. Our results also show that protein network data can be used to minimize false negatives and false positives and to more efficiently identify comprehensive sets of regulators for a process. Finally, our data provides a high confidence set of genes that are likely to play key roles in regulating the cell cycle or cell survival. BioMed Central 2011-05-06 /pmc/articles/PMC3113730/ /pubmed/21548953 http://dx.doi.org/10.1186/1752-0509-5-65 Text en Copyright ©2011 Guest et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Guest, Stephen T Yu, Jingkai Liu, Dongmei Hines, Julie A Kashat, Maria A Finley, Russell L A protein network-guided screen for cell cycle regulators in Drosophila |
title | A protein network-guided screen for cell cycle regulators in Drosophila |
title_full | A protein network-guided screen for cell cycle regulators in Drosophila |
title_fullStr | A protein network-guided screen for cell cycle regulators in Drosophila |
title_full_unstemmed | A protein network-guided screen for cell cycle regulators in Drosophila |
title_short | A protein network-guided screen for cell cycle regulators in Drosophila |
title_sort | protein network-guided screen for cell cycle regulators in drosophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113730/ https://www.ncbi.nlm.nih.gov/pubmed/21548953 http://dx.doi.org/10.1186/1752-0509-5-65 |
work_keys_str_mv | AT gueststephent aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT yujingkai aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT liudongmei aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT hinesjuliea aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT kashatmariaa aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT finleyrusselll aproteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT gueststephent proteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT yujingkai proteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT liudongmei proteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT hinesjuliea proteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT kashatmariaa proteinnetworkguidedscreenforcellcycleregulatorsindrosophila AT finleyrusselll proteinnetworkguidedscreenforcellcycleregulatorsindrosophila |