Cargando…

Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H

BACKGROUND: Marek's disease virus (MDV), which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaojia, Chi, Xiaojing, Wang, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113977/
https://www.ncbi.nlm.nih.gov/pubmed/21518442
http://dx.doi.org/10.1186/1743-422X-8-190
Descripción
Sumario:BACKGROUND: Marek's disease virus (MDV), which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition, we examined the domains of the MDV glycoproteins gH and gB. RESULTS: Four peptides derived from the MDV glycoprotein gH (gHH1, gHH2, gHH3, and gHH5) and one peptide derived from gB (gBH1) could efficiently inhibit plaque formation in primary chicken embryo fibroblast cells (CEFs) with 50% inhibitory concentrations (IC(50)) of below 12 μM. These peptides were also significantly able to reduce lesion formation on chorioallantoic membranes (CAMs) of infected chicken embryos at a concentration of 0.5 mM in 60 μl of solution. The HR2 peptide from Newcastle disease virus (NDVHR2) exerted effects on MDV specifically at the stage of virus entry (i.e., in a cell pre-treatment assay and an embryo co-treatment assay), suggesting cross-inhibitory effects of NDV HR2 on MDV infection. None of the peptides exhibited cytotoxic effects at the concentrations tested. Structural characteristics of the five peptides were examined further. CONCLUSIONS: The five MDV-derived peptides demonstrated potent antiviral activity, not only in plaque formation assays in vitro, but also in lesion formation assays in vivo. The present study examining the antiviral activity of these MDV peptides, which are useful as small-molecule antiviral inhibitors, provides information about the MDV entry mechanism.