Cargando…
Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain O...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114221/ https://www.ncbi.nlm.nih.gov/pubmed/21698016 http://dx.doi.org/10.1364/BOE.2.001524 |
_version_ | 1782206036220837888 |
---|---|
author | LaRocca, Francesco Chiu, Stephanie J. McNabb, Ryan P. Kuo, Anthony N. Izatt, Joseph A. Farsiu, Sina |
author_facet | LaRocca, Francesco Chiu, Stephanie J. McNabb, Ryan P. Kuo, Anthony N. Izatt, Joseph A. Farsiu, Sina |
author_sort | LaRocca, Francesco |
collection | PubMed |
description | Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader—even in the presence of significant imaging outliers. |
format | Online Article Text |
id | pubmed-3114221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Optical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-31142212011-06-22 Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming LaRocca, Francesco Chiu, Stephanie J. McNabb, Ryan P. Kuo, Anthony N. Izatt, Joseph A. Farsiu, Sina Biomed Opt Express Image Processing Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader—even in the presence of significant imaging outliers. Optical Society of America 2011-05-12 /pmc/articles/PMC3114221/ /pubmed/21698016 http://dx.doi.org/10.1364/BOE.2.001524 Text en ©2011 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially. |
spellingShingle | Image Processing LaRocca, Francesco Chiu, Stephanie J. McNabb, Ryan P. Kuo, Anthony N. Izatt, Joseph A. Farsiu, Sina Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title | Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title_full | Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title_fullStr | Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title_full_unstemmed | Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title_short | Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming |
title_sort | robust automatic segmentation of corneal layer boundaries in sdoct images using graph theory and dynamic programming |
topic | Image Processing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114221/ https://www.ncbi.nlm.nih.gov/pubmed/21698016 http://dx.doi.org/10.1364/BOE.2.001524 |
work_keys_str_mv | AT laroccafrancesco robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming AT chiustephaniej robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming AT mcnabbryanp robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming AT kuoanthonyn robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming AT izattjosepha robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming AT farsiusina robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming |