Cargando…

Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming

Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain O...

Descripción completa

Detalles Bibliográficos
Autores principales: LaRocca, Francesco, Chiu, Stephanie J., McNabb, Ryan P., Kuo, Anthony N., Izatt, Joseph A., Farsiu, Sina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114221/
https://www.ncbi.nlm.nih.gov/pubmed/21698016
http://dx.doi.org/10.1364/BOE.2.001524
_version_ 1782206036220837888
author LaRocca, Francesco
Chiu, Stephanie J.
McNabb, Ryan P.
Kuo, Anthony N.
Izatt, Joseph A.
Farsiu, Sina
author_facet LaRocca, Francesco
Chiu, Stephanie J.
McNabb, Ryan P.
Kuo, Anthony N.
Izatt, Joseph A.
Farsiu, Sina
author_sort LaRocca, Francesco
collection PubMed
description Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader—even in the presence of significant imaging outliers.
format Online
Article
Text
id pubmed-3114221
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Optical Society of America
record_format MEDLINE/PubMed
spelling pubmed-31142212011-06-22 Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming LaRocca, Francesco Chiu, Stephanie J. McNabb, Ryan P. Kuo, Anthony N. Izatt, Joseph A. Farsiu, Sina Biomed Opt Express Image Processing Segmentation of anatomical structures in corneal images is crucial for the diagnosis and study of anterior segment diseases. However, manual segmentation is a time-consuming and subjective process. This paper presents an automatic approach for segmenting corneal layer boundaries in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Our approach is robust to the low-SNR and different artifact types that can appear in clinical corneal images. We show that our method segments three corneal layer boundaries in normal adult eyes more accurately compared to an expert grader than a second grader—even in the presence of significant imaging outliers. Optical Society of America 2011-05-12 /pmc/articles/PMC3114221/ /pubmed/21698016 http://dx.doi.org/10.1364/BOE.2.001524 Text en ©2011 Optical Society of America http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.
spellingShingle Image Processing
LaRocca, Francesco
Chiu, Stephanie J.
McNabb, Ryan P.
Kuo, Anthony N.
Izatt, Joseph A.
Farsiu, Sina
Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title_full Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title_fullStr Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title_full_unstemmed Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title_short Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
title_sort robust automatic segmentation of corneal layer boundaries in sdoct images using graph theory and dynamic programming
topic Image Processing
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114221/
https://www.ncbi.nlm.nih.gov/pubmed/21698016
http://dx.doi.org/10.1364/BOE.2.001524
work_keys_str_mv AT laroccafrancesco robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming
AT chiustephaniej robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming
AT mcnabbryanp robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming
AT kuoanthonyn robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming
AT izattjosepha robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming
AT farsiusina robustautomaticsegmentationofcorneallayerboundariesinsdoctimagesusinggraphtheoryanddynamicprogramming