Cargando…
Protein interaction sentence detection using multiple semantic kernels
BACKGROUND: Detection of sentences that describe protein-protein interactions (PPIs) in biomedical publications is a challenging and unresolved pattern recognition problem. Many state-of-the-art approaches for this task employ kernel classification methods, in particular support vector machines (SVM...
Autores principales: | Polajnar, Tamara, Damoulas, Theodoros, Girolami, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116455/ https://www.ncbi.nlm.nih.gov/pubmed/21569604 http://dx.doi.org/10.1186/2041-1480-2-1 |
Ejemplares similares
-
Integrating Semantic Information into Multiple Kernels for Protein-Protein Interaction Extraction from Biomedical Literatures
por: Li, Lishuang, et al.
Publicado: (2014) -
The contribution of semantics to the sentence superiority effect
por: Massol, Stéphanie, et al.
Publicado: (2021) -
Catecholaminergic Modulation of Semantic Processing in Sentence Comprehension
por: Tan, Yingying, et al.
Publicado: (2020) -
Development and Validation of Sentences Without Semantic Context to Complement the Basic English Lexicon Sentences
por: O'Neill, Erin R., et al.
Publicado: (2020) -
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing
por: Grisoni, Luigi, et al.
Publicado: (2017)