Cargando…

Toxoplasma gondii down modulates cadherin expression in skeletal muscle cells inhibiting myogenesis

BACKGROUND: Toxoplasma gondii belongs to a large and diverse group of obligate intracellular parasitic protozoa. Primary culture of mice skeletal muscle cells (SkMC) was employed as a model for experimental toxoplasmosis studies. The myogenesis of SkMC was reproduced in vitro and the ability of T. g...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomes, Alessandra F, Guimarães, Erick V, Carvalho, Laís, Correa, José R, Mendonça-Lima, Leila, Barbosa, Helene S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116462/
https://www.ncbi.nlm.nih.gov/pubmed/21592384
http://dx.doi.org/10.1186/1471-2180-11-110
Descripción
Sumario:BACKGROUND: Toxoplasma gondii belongs to a large and diverse group of obligate intracellular parasitic protozoa. Primary culture of mice skeletal muscle cells (SkMC) was employed as a model for experimental toxoplasmosis studies. The myogenesis of SkMC was reproduced in vitro and the ability of T. gondii tachyzoite forms to infect myoblasts and myotubes and its influence on SkMC myogenesis were analyzed. RESULTS: In this study we show that, after 24 h of interaction, myoblasts (61%) were more infected with T. gondii than myotubes (38%) and inhibition of myogenesis was about 75%. The role of adhesion molecules such as cadherin in this event was investigated. First, we demonstrate that cadherin localization was restricted to the contact areas between myocytes/myocytes and myocytes/myotubes during the myogenesis process. Immunofluorescence and immunoblotting analysis of parasite-host cell interaction showed a 54% reduction in cadherin expression at 24 h of infection. Concomitantly, a reduction in M-cadherin mRNA levels was observed after 3 and 24 h of T. gondii-host cell interaction. CONCLUSIONS: These data suggest that T. gondii is able to down regulate M-cadherin expression, leading to molecular modifications in the host cell surface that interfere with membrane fusion and consequently affect the myogenesis process.