Cargando…

Down-regulation of IRES containing 5'UTR of HCV genotype 3a using siRNAs

BACKGROUND: Hepatitis C virus (HCV) is a major causative agent of liver associated diseases leading to the development of hepatocellular carcinoma (HCC) all over the world and genotype-3a responsible for most of the cases in Pakistan. Due to the limited efficiency of current chemotherapy of interfer...

Descripción completa

Detalles Bibliográficos
Autores principales: Khaliq, Saba, Jahan, Shah, Pervaiz, Asim, Ali Ashfaq, Usman, Hassan, Sajida
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116492/
https://www.ncbi.nlm.nih.gov/pubmed/21569449
http://dx.doi.org/10.1186/1743-422X-8-221
Descripción
Sumario:BACKGROUND: Hepatitis C virus (HCV) is a major causative agent of liver associated diseases leading to the development of hepatocellular carcinoma (HCC) all over the world and genotype-3a responsible for most of the cases in Pakistan. Due to the limited efficiency of current chemotherapy of interferon-α (IFN-α) and ribavirin against HCV infection alternative options are desperately needed out of which the recently discovered RNAi represent a powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process to silence virus infection or replication. HCV translation is mediated by a highly conserved internal ribosome entry site (IRES) within the 5'UTR region making it a relevant target for new drug development. MATERIALS AND METHODS: The present study was proposed to assess and explore the possibility of HCV silencing using siRNA targeting 5'UTR. For this analysis full length HCV 5'UTR of HCV-3a (pCR3.1/5'UTR) was tagged with GFP protein for in vitro analysis in Huh-7 cells. siRNA targeting 5'UTR were designed, and tested against constructed vector in Huh-7 cell line both at RNA and Protein levels. Furthermore, the effect of these siRNAs was confirmed in HCV-3a serum infected Huh-7 cell line. RESULTS: The expression of 5'UTR-GFP was dramatically reduced both at mRNA and protein levels as compared with Mock transfected and control siRNAs treated cells using siRNAs against IRES of HCV-3a genotype. The potential of siRNAs specificity to inhibit HCV-3a replication in serum-infected Huh-7 cells was also investigated; upon treatment with siRNAs a significant decrease in HCV viral copy number and protein expression was observed. CONCLUSIONS: Overall, the present work of siRNAs against HCV 5'UTR inhibits HCV-3a expression and represents effective future therapeutic opportunities against HCV-3a genotype.