Cargando…
Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data
One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simp...
Autores principales: | Saccenti, Edoardo, Westerhuis, Johan A., Smilde, Age K., van der Werf, Mariët J., Hageman, Jos A., Hendriks, Margriet M. W. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116836/ https://www.ncbi.nlm.nih.gov/pubmed/21698241 http://dx.doi.org/10.1371/journal.pone.0020747 |
Ejemplares similares
-
Simplivariate Models: Ideas and First Examples
por: Hageman, Jos A., et al.
Publicado: (2008) -
Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models
por: Saccenti, Edoardo, et al.
Publicado: (2020) -
Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies
por: Szymańska, Ewa, et al.
Publicado: (2011) -
Centering, scaling, and transformations: improving the biological information content of metabolomics data
por: van den Berg, Robert A, et al.
Publicado: (2006) -
Metabolic network discovery through reverse engineering of metabolome data
por: Çakır, Tunahan, et al.
Publicado: (2009)