Cargando…
Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networ...
Autores principales: | Li, Wenyuan, Liu, Chun-Chi, Zhang, Tong, Li, Haifeng, Waterman, Michael S., Zhou, Xianghong Jasmine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116899/ https://www.ncbi.nlm.nih.gov/pubmed/21698123 http://dx.doi.org/10.1371/journal.pcbi.1001106 |
Ejemplares similares
-
Integrating many co-splicing networks to reconstruct splicing regulatory modules
por: Dai, Chao, et al.
Publicado: (2012) -
Integrative missing value estimation for microarray data
por: Hu, Jianjun, et al.
Publicado: (2006) -
Tensor Networks: entanglement and the simulation of quantum many-body problems
por: Bañuls, Mari Carmen
Publicado: (2022) -
Tensor Networks: entanglement and the simulation of quantum many-body problems
por: Bañuls, Mari Carmen
Publicado: (2022) -
Computational Analysis of High-Dimensional DNA Methylation Data for Cancer Prognosis
por: Hu, Ran, et al.
Publicado: (2022)