Cargando…
Identification of metabolic network models from incomplete high-throughput datasets
Motivation: High-throughput measurement techniques for metabolism and gene expression provide a wealth of information for the identification of metabolic network models. Yet, missing observations scattered over the dataset restrict the number of effectively available datapoints and make classical re...
Autores principales: | Berthoumieux, Sara, Brilli, Matteo, de Jong, Hidde, Kahn, Daniel, Cinquemani, Eugenio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117355/ https://www.ncbi.nlm.nih.gov/pubmed/21685069 http://dx.doi.org/10.1093/bioinformatics/btr225 |
Ejemplares similares
-
Error correction of high-throughput sequencing datasets with non-uniform coverage
por: Medvedev, Paul, et al.
Publicado: (2011) -
Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
por: Alexandrov, Theodore, et al.
Publicado: (2011) -
Systematic exploration of error sources in pyrosequencing flowgram data
por: Balzer, Susanne, et al.
Publicado: (2011) -
Uncover disease genes by maximizing information flow in the phenome–interactome network
por: Chen, Yong, et al.
Publicado: (2011) -
A conditional random fields method for RNA sequence–structure relationship modeling and conformation sampling
por: Wang, Zhiyong, et al.
Publicado: (2011)