Cargando…
An integrative clustering and modeling algorithm for dynamical gene expression data
Motivation: The precise dynamics of gene expression is often crucial for proper response to stimuli. Time-course gene-expression profiles can provide insights about the dynamics of many cellular responses, but are often noisy and measured at arbitrary intervals, posing a major analysis challenge. Re...
Autores principales: | Sivriver, Julia, Habib, Naomi, Friedman, Nir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117368/ https://www.ncbi.nlm.nih.gov/pubmed/21685097 http://dx.doi.org/10.1093/bioinformatics/btr250 |
Ejemplares similares
-
Physical Module Networks: an integrative approach for reconstructing transcription regulation
por: Novershtern, Noa, et al.
Publicado: (2011) -
StructHDP: automatic inference of number of clusters and population structure from admixed genotype data
por: Shringarpure, Suyash, et al.
Publicado: (2011) -
A folding algorithm for extended RNA secondary structures
por: zu Siederdissen, Christian Höner, et al.
Publicado: (2011) -
Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
por: Alexandrov, Theodore, et al.
Publicado: (2011) -
A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
por: Zhang, Shihua, et al.
Publicado: (2011)