Cargando…
Optimally discriminative subnetwork markers predict response to chemotherapy
Motivation: Molecular profiles of tumour samples have been widely and successfully used for classification problems. A number of algorithms have been proposed to predict classes of tumor samples based on expression profiles with relatively high performance. However, prediction of response to cancer...
Autores principales: | Dao, Phuong, Wang, Kendric, Collins, Colin, Ester, Martin, Lapuk, Anna, Sahinalp, S. Cenk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117373/ https://www.ncbi.nlm.nih.gov/pubmed/21685072 http://dx.doi.org/10.1093/bioinformatics/btr245 |
Ejemplares similares
-
Systematic exploration of error sources in pyrosequencing flowgram data
por: Balzer, Susanne, et al.
Publicado: (2011) -
Uncover disease genes by maximizing information flow in the phenome–interactome network
por: Chen, Yong, et al.
Publicado: (2011) -
A conditional random fields method for RNA sequence–structure relationship modeling and conformation sampling
por: Wang, Zhiyong, et al.
Publicado: (2011) -
Small sets of interacting proteins suggest functional linkage mechanisms via Bayesian analogical reasoning
por: Airoldi, Edoardo M., et al.
Publicado: (2011) -
Author Index
Publicado: (2011)