Cargando…
ccSVM: correcting Support Vector Machines for confounding factors in biological data classification
Motivation: Classifying biological data into different groups is a central task of bioinformatics: for instance, to predict the function of a gene or protein, the disease state of a patient or the phenotype of an individual based on its genotype. Support Vector Machines are a wide spread approach fo...
Autores principales: | Li, Limin, Rakitsch, Barbara, Borgwardt, Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117385/ https://www.ncbi.nlm.nih.gov/pubmed/21685091 http://dx.doi.org/10.1093/bioinformatics/btr204 |
Ejemplares similares
-
Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs
por: Kam-Thong, Tony, et al.
Publicado: (2011) -
Systematic exploration of error sources in pyrosequencing flowgram data
por: Balzer, Susanne, et al.
Publicado: (2011) -
Uncover disease genes by maximizing information flow in the phenome–interactome network
por: Chen, Yong, et al.
Publicado: (2011) -
A conditional random fields method for RNA sequence–structure relationship modeling and conformation sampling
por: Wang, Zhiyong, et al.
Publicado: (2011) -
Small sets of interacting proteins suggest functional linkage mechanisms via Bayesian analogical reasoning
por: Airoldi, Edoardo M., et al.
Publicado: (2011)