Cargando…

The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein

BACKGROUND: F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membran...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Kemin, Lawler, Jack
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117680/
https://www.ncbi.nlm.nih.gov/pubmed/21569239
http://dx.doi.org/10.1186/1472-6807-11-22
_version_ 1782206350809366528
author Tan, Kemin
Lawler, Jack
author_facet Tan, Kemin
Lawler, Jack
author_sort Tan, Kemin
collection PubMed
description BACKGROUND: F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. RESULTS: We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca(2+)-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. CONCLUSION: The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca(2+)- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.
format Online
Article
Text
id pubmed-3117680
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31176802011-06-18 The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein Tan, Kemin Lawler, Jack BMC Struct Biol Research Article BACKGROUND: F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. RESULTS: We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca(2+)-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. CONCLUSION: The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca(2+)- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin. BioMed Central 2011-05-10 /pmc/articles/PMC3117680/ /pubmed/21569239 http://dx.doi.org/10.1186/1472-6807-11-22 Text en Copyright ©2011 Tan and Lawler; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tan, Kemin
Lawler, Jack
The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title_full The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title_fullStr The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title_full_unstemmed The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title_short The structure of the Ca(2+)-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein
title_sort structure of the ca(2+)-binding, glycosylated f-spondin domain of f-spondin - a c2-domain variant in an extracellular matrix protein
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117680/
https://www.ncbi.nlm.nih.gov/pubmed/21569239
http://dx.doi.org/10.1186/1472-6807-11-22
work_keys_str_mv AT tankemin thestructureoftheca2bindingglycosylatedfspondindomainoffspondinac2domainvariantinanextracellularmatrixprotein
AT lawlerjack thestructureoftheca2bindingglycosylatedfspondindomainoffspondinac2domainvariantinanextracellularmatrixprotein
AT tankemin structureoftheca2bindingglycosylatedfspondindomainoffspondinac2domainvariantinanextracellularmatrixprotein
AT lawlerjack structureoftheca2bindingglycosylatedfspondindomainoffspondinac2domainvariantinanextracellularmatrixprotein