Cargando…
On the curvature in logarithmic plots of rate coefficients for chemical reactions
In terms of the reduced potential energy barrier ζ = Δu(TS)/kT, the rate coefficients for chemical reactions are usually expressed as proportional to e(-ζ). The coupling between vibrational modes of the medium to the reaction coordinate leads to a proportionality of the regularized gamma function of...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117758/ https://www.ncbi.nlm.nih.gov/pubmed/21545752 http://dx.doi.org/10.1186/1752-153X-5-22 |
Sumario: | In terms of the reduced potential energy barrier ζ = Δu(TS)/kT, the rate coefficients for chemical reactions are usually expressed as proportional to e(-ζ). The coupling between vibrational modes of the medium to the reaction coordinate leads to a proportionality of the regularized gamma function of Euler Q(a,ζ) = Γ(a,ζ)/Γ(a), with a being the number of modes coupled to the reaction coordinate. In this work, the experimental rate coefficients at various temperatures for several chemical reactions were fitted to the theoretical expression in terms of Q(a,ζ) to determine the extent of its validity and generality. The new expression affords lower deviations from the experimental points in 29 cases out of 38 and it accounts for the curvature in the logarithmic plots of rate coefficients versus inverse temperature. In the absence of tunneling, conventional theories predict the curvature of these plots to be identically zero. |
---|