Cargando…
A Multi-Label Classifier for Predicting the Subcellular Localization of Gram-Negative Bacterial Proteins with Both Single and Multiple Sites
Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the “multi-label scale” and hybridizing the information of gene ontology with the sequential evolution inform...
Autores principales: | Xiao, Xuan, Wu, Zhi-Cheng, Chou, Kuo-Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117797/ https://www.ncbi.nlm.nih.gov/pubmed/21698097 http://dx.doi.org/10.1371/journal.pone.0020592 |
Ejemplares similares
-
Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble
por: Wang, Xiao, et al.
Publicado: (2015) -
iLoc-Euk: A Multi-Label Classifier for Predicting the Subcellular Localization of Singleplex and Multiplex Eukaryotic Proteins
por: Chou, Kuo-Chen, et al.
Publicado: (2011) -
Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites
por: He, Jianjun, et al.
Publicado: (2012) -
Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier
por: Guo, Xiaotong, et al.
Publicado: (2016) -
Use of Chou’s 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment
por: Bouziane, Hafida, et al.
Publicado: (2020)