Cargando…
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
BACKGROUND: Protein secondary structure prediction provides insight into protein function and is a valuable preliminary step for predicting the 3D structure of a protein. Dynamic Bayesian networks (DBNs) and support vector machines (SVMs) have been shown to provide state-of-the-art performance in se...
Autores principales: | Aydin, Zafer, Singh, Ajit, Bilmes, Jeff, Noble, William S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118164/ https://www.ncbi.nlm.nih.gov/pubmed/21569525 http://dx.doi.org/10.1186/1471-2105-12-154 |
Ejemplares similares
-
Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian Networks
por: Reynolds, Sheila M., et al.
Publicado: (2008) -
Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification
por: Klammer, Aaron A., et al.
Publicado: (2008) -
A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data
por: Chen, Xiaoyu, et al.
Publicado: (2010) -
Stochastic margin-based structure learning of Bayesian network classifiers
por: Pernkopf, Franz, et al.
Publicado: (2013) -
Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods
por: Jiang, Richard, et al.
Publicado: (2022)