Cargando…
Intestinal microflora and body mass index during the first three years of life: an observational study
BACKGROUND: Recent research on obesity has demonstrated that the intestinal microflora can have an important influence on host energy balance. The aim of the study was to investigate the relationship between the intestinal microflora and the body mass index in the first 3 years of life. RESULTS: In...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118227/ https://www.ncbi.nlm.nih.gov/pubmed/21605455 http://dx.doi.org/10.1186/1757-4749-3-8 |
Sumario: | BACKGROUND: Recent research on obesity has demonstrated that the intestinal microflora can have an important influence on host energy balance. The aim of the study was to investigate the relationship between the intestinal microflora and the body mass index in the first 3 years of life. RESULTS: In a prospective study, a faecal sample from 138 infants was taken at the age of 3, 26 and 52 weeks and cultured on selective media for 6 bacterial genera. Between the age of 1 and 3 years the Body Mass Index Standard Deviation Score (BMI SDS) of these children was determined. The association between the intestinal flora and BMI SDS was assessed for each bacterial genus. A positive correlation was found between the Bacteroides fragilis concentration and the BMI SDS at the age of 3 and 26 weeks. The Staphylococcus concentration showed a negative correlation with the BMI SDS at the age of 3 and 52 weeks. A low intestinal ratio of Staphylococcus/Bacteroides fragilis at the age of 3 weeks, corresponding to a low Staphylococcus and a high Bacteroides fragilis concentration, was associated with a higher BMI SDS during the first three years of life. CONCLUSION: High intestinal Bacteroides fragilis and low Staphylococcus concentrations in infants between the age of 3 weeks and 1 year were associated with a higher risk of obesity later in life. This study could provide new targets for a better and more effective modulation of the intestinal microflora in infants. |
---|