Cargando…
Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics
BACKGROUND: Two isoforms of the enzyme adenosine kinase (AdK), which differ at their N-terminal ends, are found in mammalian cells. However, there is no information available regarding the unique functional aspects or regulation of these isoforms. RESULTS: We show that the two AdK isoforms differ on...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118340/ https://www.ncbi.nlm.nih.gov/pubmed/21586167 http://dx.doi.org/10.1186/1471-2091-12-22 |
_version_ | 1782206460372975616 |
---|---|
author | Cui, Xianying A Agarwal, Tanvi Singh, Bhag Gupta, Radhey S |
author_facet | Cui, Xianying A Agarwal, Tanvi Singh, Bhag Gupta, Radhey S |
author_sort | Cui, Xianying A |
collection | PubMed |
description | BACKGROUND: Two isoforms of the enzyme adenosine kinase (AdK), which differ at their N-terminal ends, are found in mammalian cells. However, there is no information available regarding the unique functional aspects or regulation of these isoforms. RESULTS: We show that the two AdK isoforms differ only in their first exons and the promoter regions; hence they arise via differential splicing of their first exons with the other exons common to both isoforms. The expression of these isoforms also varied greatly in different rat tissues and cell lines with some tissues expressing both isoforms and others expressing only one of the isoforms. To gain insights into cellular functions of these isoforms, mutants resistant to toxic adenosine analogs formycin A and tubercidin were selected from Chinese hamster (CH) cell lines expressing either one or both isoforms. The AdK activity in most of these mutants was reduced to <5% of wild-type cells and they also showed large differences in the expression of the two isoforms. Thus, the genetic alterations in these mutants likely affected both regulatory and structural regions of AdK. We have characterized the molecular alterations in a number of these mutants. One of these mutants lacking AdK activity was affected in the conserved NxxE motif thereby providing evidence that this motif involved in the binding of Mg(2+ )and phosphate ions is essential for AdK function. Another mutant, Fom(R)-4, exhibiting increased resistance to only C-adenosine analogs and whose resistance was expressed dominantly in cell-hybrids contained a single mutation leading to Ser(191)Phe alteration in AdK. We demonstrate that this mutation in AdK is sufficient to confer the novel genetic and biochemical characteristics of this mutant. The unusual genetic and biochemical characteristics of the Fom(R)-4 mutant suggest that AdK in this mutant might be complexed with the enzyme AMP-kinase. Several other AdK mutants were altered in surface residues that likely affect its binding to the adenosine analogs and its interaction with other cellular proteins. CONCLUSIONS: These AdK mutants provide important insights as well as novel tools for understanding the cellular functions of the two isoforms and their regulation in mammalian cells. |
format | Online Article Text |
id | pubmed-3118340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31183402011-06-20 Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics Cui, Xianying A Agarwal, Tanvi Singh, Bhag Gupta, Radhey S BMC Biochem Research Article BACKGROUND: Two isoforms of the enzyme adenosine kinase (AdK), which differ at their N-terminal ends, are found in mammalian cells. However, there is no information available regarding the unique functional aspects or regulation of these isoforms. RESULTS: We show that the two AdK isoforms differ only in their first exons and the promoter regions; hence they arise via differential splicing of their first exons with the other exons common to both isoforms. The expression of these isoforms also varied greatly in different rat tissues and cell lines with some tissues expressing both isoforms and others expressing only one of the isoforms. To gain insights into cellular functions of these isoforms, mutants resistant to toxic adenosine analogs formycin A and tubercidin were selected from Chinese hamster (CH) cell lines expressing either one or both isoforms. The AdK activity in most of these mutants was reduced to <5% of wild-type cells and they also showed large differences in the expression of the two isoforms. Thus, the genetic alterations in these mutants likely affected both regulatory and structural regions of AdK. We have characterized the molecular alterations in a number of these mutants. One of these mutants lacking AdK activity was affected in the conserved NxxE motif thereby providing evidence that this motif involved in the binding of Mg(2+ )and phosphate ions is essential for AdK function. Another mutant, Fom(R)-4, exhibiting increased resistance to only C-adenosine analogs and whose resistance was expressed dominantly in cell-hybrids contained a single mutation leading to Ser(191)Phe alteration in AdK. We demonstrate that this mutation in AdK is sufficient to confer the novel genetic and biochemical characteristics of this mutant. The unusual genetic and biochemical characteristics of the Fom(R)-4 mutant suggest that AdK in this mutant might be complexed with the enzyme AMP-kinase. Several other AdK mutants were altered in surface residues that likely affect its binding to the adenosine analogs and its interaction with other cellular proteins. CONCLUSIONS: These AdK mutants provide important insights as well as novel tools for understanding the cellular functions of the two isoforms and their regulation in mammalian cells. BioMed Central 2011-05-17 /pmc/articles/PMC3118340/ /pubmed/21586167 http://dx.doi.org/10.1186/1471-2091-12-22 Text en Copyright ©2011 Cui et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cui, Xianying A Agarwal, Tanvi Singh, Bhag Gupta, Radhey S Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title | Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title_full | Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title_fullStr | Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title_full_unstemmed | Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title_short | Molecular Characterization of Chinese Hamster Cells Mutants Affected in Adenosine Kinase and Showing Novel Genetic and Biochemical Characteristics |
title_sort | molecular characterization of chinese hamster cells mutants affected in adenosine kinase and showing novel genetic and biochemical characteristics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118340/ https://www.ncbi.nlm.nih.gov/pubmed/21586167 http://dx.doi.org/10.1186/1471-2091-12-22 |
work_keys_str_mv | AT cuixianyinga molecularcharacterizationofchinesehamstercellsmutantsaffectedinadenosinekinaseandshowingnovelgeneticandbiochemicalcharacteristics AT agarwaltanvi molecularcharacterizationofchinesehamstercellsmutantsaffectedinadenosinekinaseandshowingnovelgeneticandbiochemicalcharacteristics AT singhbhag molecularcharacterizationofchinesehamstercellsmutantsaffectedinadenosinekinaseandshowingnovelgeneticandbiochemicalcharacteristics AT guptaradheys molecularcharacterizationofchinesehamstercellsmutantsaffectedinadenosinekinaseandshowingnovelgeneticandbiochemicalcharacteristics |