Cargando…
Kernel density weighted loess normalization improves the performance of detection within asymmetrical data
BACKGROUND: Normalization of gene expression data has been studied for many years and various strategies have been formulated to deal with various types of data. Most normalization algorithms rely on the assumption that the number of up-regulated genes and the number of down-regulated genes are roug...
Autores principales: | Hsieh, Wen-Ping, Chu, Tzu-Ming, Lin, Yu-Min, Wolfinger, Russell D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118355/ https://www.ncbi.nlm.nih.gov/pubmed/21631915 http://dx.doi.org/10.1186/1471-2105-12-222 |
Ejemplares similares
-
Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping
por: Ruckthongsook, Warangkana, et al.
Publicado: (2018) -
A weighted string kernel for protein fold recognition
por: Nojoomi, Saghi, et al.
Publicado: (2017) -
High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging
por: Makanza, R., et al.
Publicado: (2018) -
Corn360: a method for quantification of corn kernels
por: Gillette, Samantha, et al.
Publicado: (2023) -
Detecting activity locations from raw GPS data: a novel kernel-based algorithm
por: Thierry, Benoit, et al.
Publicado: (2013)