Cargando…
Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds
Past studies have found that, in adults, the acoustic properties of sound signals (such as fast versus slow temporal features) differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118480/ https://www.ncbi.nlm.nih.gov/pubmed/21720538 http://dx.doi.org/10.3389/fpsyg.2011.00135 |
_version_ | 1782206477688111104 |
---|---|
author | Minagawa-Kawai, Yasuyo Cristià, Alejandrina Vendelin, Inga Cabrol, Dominique Dupoux, Emmanuel |
author_facet | Minagawa-Kawai, Yasuyo Cristià, Alejandrina Vendelin, Inga Cabrol, Dominique Dupoux, Emmanuel |
author_sort | Minagawa-Kawai, Yasuyo |
collection | PubMed |
description | Past studies have found that, in adults, the acoustic properties of sound signals (such as fast versus slow temporal features) differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS) and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb) in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language. |
format | Online Article Text |
id | pubmed-3118480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31184802011-06-29 Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds Minagawa-Kawai, Yasuyo Cristià, Alejandrina Vendelin, Inga Cabrol, Dominique Dupoux, Emmanuel Front Psychol Psychology Past studies have found that, in adults, the acoustic properties of sound signals (such as fast versus slow temporal features) differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS) and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb) in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language. Frontiers Research Foundation 2011-06-16 /pmc/articles/PMC3118480/ /pubmed/21720538 http://dx.doi.org/10.3389/fpsyg.2011.00135 Text en Copyright © 2011 Minagawa-Kawai, Cristià, Vendelin, Cabrol and Dupoux. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with. |
spellingShingle | Psychology Minagawa-Kawai, Yasuyo Cristià, Alejandrina Vendelin, Inga Cabrol, Dominique Dupoux, Emmanuel Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title | Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title_full | Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title_fullStr | Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title_full_unstemmed | Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title_short | Assessing Signal-Driven Mechanisms in Neonates: Brain Responses to Temporally and Spectrally Different Sounds |
title_sort | assessing signal-driven mechanisms in neonates: brain responses to temporally and spectrally different sounds |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118480/ https://www.ncbi.nlm.nih.gov/pubmed/21720538 http://dx.doi.org/10.3389/fpsyg.2011.00135 |
work_keys_str_mv | AT minagawakawaiyasuyo assessingsignaldrivenmechanismsinneonatesbrainresponsestotemporallyandspectrallydifferentsounds AT cristiaalejandrina assessingsignaldrivenmechanismsinneonatesbrainresponsestotemporallyandspectrallydifferentsounds AT vendelininga assessingsignaldrivenmechanismsinneonatesbrainresponsestotemporallyandspectrallydifferentsounds AT cabroldominique assessingsignaldrivenmechanismsinneonatesbrainresponsestotemporallyandspectrallydifferentsounds AT dupouxemmanuel assessingsignaldrivenmechanismsinneonatesbrainresponsestotemporallyandspectrallydifferentsounds |