Cargando…
Predicting Species Diversity of Benthic Communities within Turbid Nearshore Using Full-Waveform Bathymetric LiDAR and Machine Learners
Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations related to both waterborne surveys (slow acquisition, shall...
Autores principales: | Collin, Antoine, Archambault, Phillippe, Long, Bernard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118790/ https://www.ncbi.nlm.nih.gov/pubmed/21701576 http://dx.doi.org/10.1371/journal.pone.0021265 |
Ejemplares similares
-
An Assessment of Waveform Processing for a Single-Beam Bathymetric LiDAR System (SBLS-1)
por: Chen, Yifu, et al.
Publicado: (2022) -
Evaluation of the Accuracy of Bathymetry on the Nearshore Coastlines of Western Korea from Satellite Altimetry, Multi-Beam, and Airborne Bathymetric LiDAR
por: Yeu, Yeon, et al.
Publicado: (2018) -
Retrieval of Suspended Sediment Concentration from Bathymetric Bias of Airborne LiDAR
por: Zhao, Xinglei, et al.
Publicado: (2022) -
Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR
por: Zhang, Changsai, et al.
Publicado: (2019) -
FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning
por: Shinohara, Takayuki, et al.
Publicado: (2020)