Cargando…
The number of equilibria in the diallelic Levene model with multiple demes
The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120059/ https://www.ncbi.nlm.nih.gov/pubmed/21185323 http://dx.doi.org/10.1016/j.tpb.2010.12.002 |
Sumario: | The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved even in the diallelic case. In this paper we answer an open problem by establishing that for two alleles at one locus and [Formula: see text] demes, up to [Formula: see text] polymorphic equilibria may coexist. We first present a proof for the case of stable monomorphisms and then show that the result also holds for protected alleles. These findings allow us to prove that any odd number (up to [Formula: see text]) of equilibria is possible, before we extend the proof to even numbers. We conclude with some numerical results and show that for [Formula: see text] , the proportion of parameter space affording this maximum is extremely small. |
---|