Cargando…

The number of equilibria in the diallelic Levene model with multiple demes

The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved...

Descripción completa

Detalles Bibliográficos
Autor principal: Novak, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120059/
https://www.ncbi.nlm.nih.gov/pubmed/21185323
http://dx.doi.org/10.1016/j.tpb.2010.12.002
Descripción
Sumario:The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved even in the diallelic case. In this paper we answer an open problem by establishing that for two alleles at one locus and [Formula: see text] demes, up to [Formula: see text] polymorphic equilibria may coexist. We first present a proof for the case of stable monomorphisms and then show that the result also holds for protected alleles. These findings allow us to prove that any odd number (up to [Formula: see text]) of equilibria is possible, before we extend the proof to even numbers. We conclude with some numerical results and show that for [Formula: see text] , the proportion of parameter space affording this maximum is extremely small.