Cargando…
Enriching for correct prediction of biological processes using a combination of diverse classifiers
BACKGROUND: Machine learning models (classifiers) for classifying genes to biological processes each have their own unique characteristics in what genes can be classified and to what biological processes. No single learning model is qualitatively superior to any other model and overall precision for...
Autores principales: | Ko, Daijin, Windle, Brad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121646/ https://www.ncbi.nlm.nih.gov/pubmed/21605426 http://dx.doi.org/10.1186/1471-2105-12-189 |
Ejemplares similares
-
Robust Framework to Combine Diverse Classifiers Assigning Distributed Confidence to Individual Classifiers at Class Level
por: Khalid, Shehzad, et al.
Publicado: (2014) -
Classifying literature mentions of biological pathogens as experimentally studied using natural language processing
por: Jimeno Yepes, Antonio Jose, et al.
Publicado: (2023) -
GOPred: GO Molecular Function Prediction by Combined Classifiers
por: Saraç, Ömer Sinan, et al.
Publicado: (2010) -
Classifying Measures of Biological Variation
por: Gregorius, Hans-Rolf, et al.
Publicado: (2015) -
Ranks underlie outcome of combining classifiers: Quantitative roles for diversity and accuracy
por: Sniatynski, Matthew J., et al.
Publicado: (2021)