Cargando…

Identification of Noncoding Transcripts from within CENP-A Chromatin at Fission Yeast Centromeres

The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We s...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Eun Shik, Strålfors, Annelie, Castillo, Araceli G., Durand-Dubief, Mickaël, Ekwall, Karl, Allshire, Robin C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123123/
https://www.ncbi.nlm.nih.gov/pubmed/21531710
http://dx.doi.org/10.1074/jbc.M111.228510
Descripción
Sumario:The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1).