Cargando…

Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid

PURPOSE: To understand the expression of genes involved in different complement pathways in the retina and retinal pigment epithelium (RPE)/choroid under physiologic conditions and how their expression is regulated by inflammatory cytokines. METHODS: The expression of complement components of the cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Chang, Chen, Mei, Xu, Heping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123163/
https://www.ncbi.nlm.nih.gov/pubmed/21738388
Descripción
Sumario:PURPOSE: To understand the expression of genes involved in different complement pathways in the retina and retinal pigment epithelium (RPE)/choroid under physiologic conditions and how their expression is regulated by inflammatory cytokines. METHODS: The expression of complement components of the classical pathway (CP), mannose-binding lectin (MBL) pathway, alternative pathway (AP), and terminal pathway in the retina and RPE/choroid was determined by conventional reverse transcription polymerase chain reaction (RT–PCR). The effect of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α, 20 ng/ml), interleukin (IL)-6 (10 ng/ml), interferon-gamma (IFN-γ, 100 ng/ml) or lipopolysaccharides (LPS, 1 μg/ml) on the expression of these complement component genes was tested in vitro in primary cultured RPE cells and a microglial cell line (BV2 cells) and quantified by real-time RT–PCR. RESULTS: In the CP, complements C1qb, C1r, C1s, C2, and C4 were constitutively expressed by retina and RPE/choroid. Complement factor H and factor B of the AP as well as C3 were also detected in the retinal and RPE/choroidal tissues. In the MBL pathway, low levels of mannose-binding lectin (MBL)-associated serine protease (MASP)-1 in the retina and RPE/choroid and MASP2L in the retina were detected. Other components, including mannose-binding lectin 1 (MBL1), mannose-binding lectin 2 (MBL2), complement factor I (CFI), complement component 5 (C5) and complement factor H-related protein 1 (CFHR1), were not detected in either the retina or the RPE/choroid. The expression of CP- and AP-complement component genes in RPE and microglial cells was upregulated by interferon (IFN)-γ treatment. Treatment with TNF-α selectively upregulated the expression of C1s and C3 genes but downregulated complement factor H gene expression in RPE and microglial cells. The expression of genes involved in the MBL pathway was not affected by the inflammatory cytokines tested in this study. CONCLUSIONS: Retina and RPE/choroid express a variety of complement components that are involved mainly in the CP and AP. RPE and microglial cells are the main sources of retinal complement gene expression. Retinal complement gene expression is regulated by inflammatory cytokines, such as IFN-γ and TNF-α.