Cargando…
FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins
BACKGROUND: The accurate prediction of ligand binding residues from amino acid sequences is important for the automated functional annotation of novel proteins. In the previous two CASP experiments, the most successful methods in the function prediction category were those which used structural supe...
Autores principales: | Roche, Daniel B, Tetchner, Stuart J, McGuffin, Liam J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123233/ https://www.ncbi.nlm.nih.gov/pubmed/21575183 http://dx.doi.org/10.1186/1471-2105-12-160 |
Ejemplares similares
-
The FunFOLD2 server for the prediction of protein–ligand interactions
por: Roche, Daniel B., et al.
Publicado: (2013) -
The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction
por: Roche, Daniel B., et al.
Publicado: (2011) -
FunFOLDQA: A Quality Assessment Tool for Protein-Ligand Binding Site Residue Predictions
por: Roche, Daniel B., et al.
Publicado: (2012) -
High throughput profile-profile based fold recognition for the entire human proteome
por: McGuffin, Liam J, et al.
Publicado: (2006) -
Rosetta FunFolDes – A general framework for the computational design of functional proteins
por: Bonet, Jaume, et al.
Publicado: (2018)