Cargando…
In Silico Gene Prioritization by Integrating Multiple Data Sources
Identifying disease genes is crucial to the understanding of disease pathogenesis, and to the improvement of disease diagnosis and treatment. In recent years, many researchers have proposed approaches to prioritize candidate genes by considering the relationship of candidate genes and existing known...
Autores principales: | Chen, Yixuan, Wang, Wenhui, Zhou, Yingyao, Shields, Robert, Chanda, Sumit K., Elston, Robert C., Li, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123338/ https://www.ncbi.nlm.nih.gov/pubmed/21731658 http://dx.doi.org/10.1371/journal.pone.0021137 |
Ejemplares similares
-
Integration of multiple data sources to prioritize candidate genes using discounted rating system
por: Li, Yongjin, et al.
Publicado: (2010) -
Haplotype-based quantitative trait mapping using a clustering algorithm
por: Li, Jing, et al.
Publicado: (2006) -
Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle
por: Cai, Zexi, et al.
Publicado: (2018) -
Integrating human omics data to prioritize candidate genes
por: Chen, Yong, et al.
Publicado: (2013) -
Identifying disease genes by integrating multiple data sources
por: Chen, Bolin, et al.
Publicado: (2014)