Cargando…

Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics

Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvemen...

Descripción completa

Detalles Bibliográficos
Autores principales: Whaley, Nathaniel Robb, Fujioka, Shinsuke, Wszolek, Zbigniew K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123548/
https://www.ncbi.nlm.nih.gov/pubmed/21619691
http://dx.doi.org/10.1186/1750-1172-6-33
_version_ 1782206988836405248
author Whaley, Nathaniel Robb
Fujioka, Shinsuke
Wszolek, Zbigniew K
author_facet Whaley, Nathaniel Robb
Fujioka, Shinsuke
Wszolek, Zbigniew K
author_sort Whaley, Nathaniel Robb
collection PubMed
description Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds.
format Online
Article
Text
id pubmed-3123548
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-31235482011-06-26 Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics Whaley, Nathaniel Robb Fujioka, Shinsuke Wszolek, Zbigniew K Orphanet J Rare Dis Review Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds. BioMed Central 2011-05-28 /pmc/articles/PMC3123548/ /pubmed/21619691 http://dx.doi.org/10.1186/1750-1172-6-33 Text en Copyright ©2011 Whaley et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Whaley, Nathaniel Robb
Fujioka, Shinsuke
Wszolek, Zbigniew K
Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title_full Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title_fullStr Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title_full_unstemmed Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title_short Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics
title_sort autosomal dominant cerebellar ataxia type i: a review of the phenotypic and genotypic characteristics
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123548/
https://www.ncbi.nlm.nih.gov/pubmed/21619691
http://dx.doi.org/10.1186/1750-1172-6-33
work_keys_str_mv AT whaleynathanielrobb autosomaldominantcerebellarataxiatypeiareviewofthephenotypicandgenotypiccharacteristics
AT fujiokashinsuke autosomaldominantcerebellarataxiatypeiareviewofthephenotypicandgenotypiccharacteristics
AT wszolekzbigniewk autosomaldominantcerebellarataxiatypeiareviewofthephenotypicandgenotypiccharacteristics